Legend:
|V|: Number of nodes in the graph (MaxCut, .mc) representation of the instance. |E|: Number of edges in the graph (MaxCut, .mc) representation of the instance. dim(Q): Row/Column dimension of the matrix Q in the unconstrained BQP (.bq) representation of the instance. nz(Q>): Number of non-zero entries in the strict upper triangle of a symmetrized matrix Q in the unconstrained BQP (.bq) representation of the instance. nz(Diag(Q)): Number of non-zero entries on the diagonal of the matrix Q in the unconstrained BQP (.bq) representation of the instance. OSV: The optimal solution value of the instance (or a lower/upper bound if marked by an asterisk).
B Sparse unconstrained BQP instances (density 10%) generated by John E. Beasley as part of the
OR Library (1990) where they can be retrieved with weights assuming a maximization objective.
There are ten instances bqpn-i with dimension n=50,100,250,500. These instances are also part of the
Biq Mac Library (2007) .
Instance
|V|
|E|
dim(Q)
nz(Q>)
nz(Diag(Q))
OSV
bqp100-1 (.mc , .bq )
101
563
100
464
11
-7970
bqp100-10 (.mc , .bq )
101
584
100
485
12
-12565
bqp100-2 (.mc , .bq )
101
582
100
482
12
-11036
bqp100-3 (.mc , .bq )
101
590
100
490
15
-12723
bqp100-4 (.mc , .bq )
101
575
100
475
12
-10368
bqp100-5 (.mc , .bq )
101
558
100
459
12
-9083
bqp100-6 (.mc , .bq )
101
610
100
510
18
-10210
bqp100-7 (.mc , .bq )
101
567
100
469
9
-10125
bqp100-8 (.mc , .bq )
101
591
100
492
7
-11435
bqp100-9 (.mc , .bq )
101
602
100
502
9
-11455
bqp250-1 (.mc , .bq )
251
3339
250
3089
31
-45607
bqp250-10 (.mc , .bq )
251
3294
250
3045
24
-40442
bqp250-2 (.mc , .bq )
251
3285
250
3035
29
-44810
bqp250-3 (.mc , .bq )
251
3313
250
3063
29
-49037
bqp250-4 (.mc , .bq )
251
3397
250
3147
26
-41274
bqp250-5 (.mc , .bq )
251
3364
250
3114
20
-47961
bqp250-6 (.mc , .bq )
251
3433
250
3183
25
-41014
bqp250-7 (.mc , .bq )
251
3337
250
3087
24
-46757
bqp250-8 (.mc , .bq )
251
3265
250
3015
24
-35726
bqp250-9 (.mc , .bq )
251
3395
250
3145
22
-48916
bqp50-1 (.mc , .bq )
51
158
50
108
3
-2098
bqp50-10 (.mc , .bq )
51
158
50
108
3
-3507
bqp50-2 (.mc , .bq )
51
168
50
120
3
-3702
bqp50-3 (.mc , .bq )
51
182
50
132
4
-4626
bqp50-4 (.mc , .bq )
51
160
50
111
4
-3544
bqp50-5 (.mc , .bq )
51
181
50
131
7
-4012
bqp50-6 (.mc , .bq )
51
150
50
101
14
-3693
bqp50-7 (.mc , .bq )
51
174
50
124
3
-4520
bqp50-8 (.mc , .bq )
51
187
50
137
10
-4216
bqp50-9 (.mc , .bq )
51
172
50
122
7
-3780
bqp500-1 (.mc , .bq )
501
12871
500
12372
49
n/a
bqp500-10 (.mc , .bq )
501
12908
500
12408
48
n/a
bqp500-2 (.mc , .bq )
501
12778
500
12278
39
n/a
bqp500-3 (.mc , .bq )
501
13021
500
12522
34
n/a
bqp500-4 (.mc , .bq )
501
12779
500
12280
52
n/a
bqp500-5 (.mc , .bq )
501
12830
500
12330
47
n/a
bqp500-6 (.mc , .bq )
501
12817
500
12318
52
n/a
bqp500-7 (.mc , .bq )
501
12907
500
12407
51
n/a
bqp500-8 (.mc , .bq )
501
12776
500
12276
38
n/a
bqp500-9 (.mc , .bq )
501
12857
500
12358
42
n/a
BE Unconstrained BQP instances generated by
Alain Billionnet and Sourour Elloumi (2007) using the generator proposed by
P. M. Pardalos and G. P. Rodgers (1990) . The precise calls to the generator can be obtained from
here .
be100.i Ten instances with dimension n=100 and density 1. ben.3.i Ten instances with dimension n=120,150,200 and density 0.3. ben.8.i Ten instances with dimension n=120,150,200 and density 0.8. be250.i Ten instances with dimension n=250 and density 0.1. These instances are also part of the
Biq Mac Library (2007), and part of the
OR Library (1990) where they can be retrieved with weights assuming a maximization objective.
Instance
|V|
|E|
dim(Q)
nz(Q>)
nz(Diag(Q))
OSV
be100.1 (.mc , .bq )
101
5003
100
4903
100
-19412
be100.10 (.mc , .bq )
101
5006
100
4906
98
-15352
be100.2 (.mc , .bq )
101
5006
100
4906
98
-17290
be100.3 (.mc , .bq )
101
5000
100
4900
99
-17565
be100.4 (.mc , .bq )
101
5004
100
4905
100
-19125
be100.5 (.mc , .bq )
101
5005
100
4905
100
-15868
be100.6 (.mc , .bq )
101
4992
100
4892
99
-17368
be100.7 (.mc , .bq )
101
5015
100
4915
100
-18629
be100.8 (.mc , .bq )
101
5009
100
4909
100
-18649
be100.9 (.mc , .bq )
101
4997
100
4898
99
-13294
be120.3.1 (.mc , .bq )
121
2242
120
2123
120
-13067
be120.3.10 (.mc , .bq )
121
2248
120
2128
119
-12201
be120.3.2 (.mc , .bq )
121
2253
120
2133
120
-13046
be120.3.3 (.mc , .bq )
121
2176
120
2056
120
-12418
be120.3.4 (.mc , .bq )
121
2224
120
2105
120
-13867
be120.3.5 (.mc , .bq )
121
2248
120
2128
120
-11403
be120.3.6 (.mc , .bq )
121
2240
120
2120
119
-12915
be120.3.7 (.mc , .bq )
121
2192
120
2072
120
-14068
be120.3.8 (.mc , .bq )
121
2249
120
2130
119
-14701
be120.3.9 (.mc , .bq )
121
2184
120
2064
120
-10458
be120.8.1 (.mc , .bq )
121
5764
120
5644
120
-18691
be120.8.10 (.mc , .bq )
121
5768
120
5648
120
-19049
be120.8.2 (.mc , .bq )
121
5747
120
5627
120
-18827
be120.8.3 (.mc , .bq )
121
5791
120
5672
120
-19302
be120.8.4 (.mc , .bq )
121
5764
120
5644
119
-20765
be120.8.5 (.mc , .bq )
121
5753
120
5633
120
-20417
be120.8.6 (.mc , .bq )
121
5720
120
5600
120
-18482
be120.8.7 (.mc , .bq )
121
5795
120
5675
119
-22194
be120.8.8 (.mc , .bq )
121
5743
120
5624
120
-19534
be120.8.9 (.mc , .bq )
121
5736
120
5616
120
-18195
be150.3.1 (.mc , .bq )
151
3500
150
3350
150
-18889
be150.3.10 (.mc , .bq )
151
3452
150
3303
149
-17963
be150.3.2 (.mc , .bq )
151
3535
150
3385
149
-17816
be150.3.3 (.mc , .bq )
151
3400
150
3250
149
-17314
be150.3.4 (.mc , .bq )
151
3446
150
3296
150
-19884
be150.3.5 (.mc , .bq )
151
3490
150
3340
147
-16817
be150.3.6 (.mc , .bq )
151
3516
150
3366
150
-16780
be150.3.7 (.mc , .bq )
151
3464
150
3315
148
-18001
be150.3.8 (.mc , .bq )
151
3465
150
3316
148
-18303
be150.3.9 (.mc , .bq )
151
3377
150
3227
150
-12838
be150.8.1 (.mc , .bq )
151
8981
150
8831
147
-27089
be150.8.10 (.mc , .bq )
151
8992
150
8842
148
-28374
be150.8.2 (.mc , .bq )
151
9021
150
8872
150
-26779
be150.8.3 (.mc , .bq )
151
8994
150
8844
150
-29438
be150.8.4 (.mc , .bq )
151
8977
150
8827
149
-26911
be150.8.5 (.mc , .bq )
151
8939
150
8789
150
-28017
be150.8.6 (.mc , .bq )
151
8937
150
8788
150
-29221
be150.8.7 (.mc , .bq )
151
9009
150
8859
150
-31209
be150.8.8 (.mc , .bq )
151
8967
150
8817
148
-29730
be150.8.9 (.mc , .bq )
151
8941
150
8791
149
-25388
be200.3.1 (.mc , .bq )
201
6123
200
5923
199
-25453
be200.3.10 (.mc , .bq )
201
6143
200
5943
197
-23842
be200.3.2 (.mc , .bq )
201
6176
200
5976
199
-25027
be200.3.3 (.mc , .bq )
201
5994
200
5794
198
-28023
be200.3.4 (.mc , .bq )
201
6077
200
5877
200
-27434
be200.3.5 (.mc , .bq )
201
6080
200
5880
198
-26355
be200.3.6 (.mc , .bq )
201
6113
200
5916
199
-26146
be200.3.7 (.mc , .bq )
201
6107
200
5908
200
-30483
be200.3.8 (.mc , .bq )
201
6130
200
5930
200
-27355
be200.3.9 (.mc , .bq )
201
6088
200
5888
199
-24683
be200.8.1 (.mc , .bq )
201
15971
200
15771
198
-48534
be200.8.10 (.mc , .bq )
201
15963
200
15763
199
-42832
be200.8.2 (.mc , .bq )
201
15957
200
15757
199
-40821
be200.8.3 (.mc , .bq )
201
15945
200
15745
200
-43207
be200.8.4 (.mc , .bq )
201
15971
200
15771
200
-43757
be200.8.5 (.mc , .bq )
201
15859
200
15659
199
-41482
be200.8.6 (.mc , .bq )
201
15877
200
15677
200
-49492
be200.8.7 (.mc , .bq )
201
15971
200
15771
200
-46828
be200.8.8 (.mc , .bq )
201
15923
200
15723
200
-44502
be200.8.9 (.mc , .bq )
201
15921
200
15721
199
-43241
be250.1 (.mc , .bq )
251
3269
250
3019
249
-24076
be250.10 (.mc , .bq )
251
3349
250
3099
250
-23159
be250.2 (.mc , .bq )
251
3343
250
3093
250
-22540
be250.3 (.mc , .bq )
251
3279
250
3029
248
-22923
be250.4 (.mc , .bq )
251
3326
250
3078
249
-24649
be250.5 (.mc , .bq )
251
3348
250
3098
250
-21057
be250.6 (.mc , .bq )
251
3309
250
3059
245
-22735
be250.7 (.mc , .bq )
251
3389
250
3140
248
-24095
be250.8 (.mc , .bq )
251
3283
250
3036
248
-23801
be250.9 (.mc , .bq )
251
3280
250
3032
249
-20051
BMZ Ising Spinglass instances generated by
Samuel Burer, Renato D. C. Monteiro, and Yin Zhang (2002) .
More precisely: 20 regular cubic lattices having randomly generated interaction magnitudes, ten with base length 10 (1000 nodes), and ten with base length 14 (2744 nodes). Like the problems considered by
Hartmann (1997) , the weights are from {-1, 0, 1} such that the total weight sum is zero. Notice that here, due to the format specifications, the zero-weight edges are not included.
Instance
|V|
|E|
dim(Q)
nz(Q>)
nz(Diag(Q))
OSV
sg3dl101000 (.mc , .bq )
1000
3000
1000
3000
697
n/a
sg3dl1010000 (.mc , .bq )
1000
3000
1000
3000
701
n/a
sg3dl102000 (.mc , .bq )
1000
3000
1000
3000
688
n/a
sg3dl103000 (.mc , .bq )
1000
3000
1000
3000
686
n/a
sg3dl104000 (.mc , .bq )
1000
3000
1000
3000
675
n/a
sg3dl105000 (.mc , .bq )
1000
3000
1000
3000
680
n/a
sg3dl106000 (.mc , .bq )
1000
3000
1000
3000
683
n/a
sg3dl107000 (.mc , .bq )
1000
3000
1000
3000
697
n/a
sg3dl108000 (.mc , .bq )
1000
3000
1000
3000
679
n/a
sg3dl109000 (.mc , .bq )
1000
3000
1000
3000
683
n/a
sg3dl141000 (.mc , .bq )
2744
8232
2744
8232
1884
n/a
sg3dl1410000 (.mc , .bq )
2744
8232
2744
8232
1901
n/a
sg3dl142000 (.mc , .bq )
2744
8232
2744
8232
1885
n/a
sg3dl143000 (.mc , .bq )
2744
8232
2744
8232
1911
n/a
sg3dl144000 (.mc , .bq )
2744
8232
2744
8232
1857
n/a
sg3dl145000 (.mc , .bq )
2744
8232
2744
8232
1892
n/a
sg3dl146000 (.mc , .bq )
2744
8232
2744
8232
1891
n/a
sg3dl147000 (.mc , .bq )
2744
8232
2744
8232
1938
n/a
sg3dl148000 (.mc , .bq )
2744
8232
2744
8232
1920
n/a
sg3dl149000 (.mc , .bq )
2744
8232
2744
8232
1872
n/a
GKA Unconstrained BQP instances generated by
Fred Glover, Gary A. Kochenberger and Bahram Alidaee using the generator proposed by
P. M. Pardalos and G. P. Rodgers (1990) . The precise calls to the generator can be obtained from
here .
gkaia: Eight instances with dimensions from 30 to 100, densities from 0.0625 to 0.5. Diagonal coefficients from [-100,100], off-diagonal coefficients from [-100,100]. gkaib: Ten instances with dimensions from 20 to 125, density 1. Diagonal coefficients from [-63,0], off-diagonal coefficients from [0,100]. gkaic: Seven instances with dimensions from 40 to 100, densities from 0.1 to 0.8. Diagonal coefficients from [-100,100], off-diagonal coefficients from [-50,50]. gkaid: Ten instances with dimension 100, densities from 0.1 to 1. Diagonal coefficients from [-75,75], off-diagonal coefficients from [-50,50]. gkaie: Five instances with dimension 200, densities from 0.1 to 0.5. Diagonal coefficients from [-100,100], off-diagonal coefficients from [-50,50]. gkaif: Five instances with dimension 500, densities from 0.1 to 1. Diagonal coefficients from [-75,75], off-diagonal coefficients from [-50,50]. These instances are also part of the
Biq Mac Library (2007), and part of the
OR Library (1990) where they can be retrieved with weights assuming a maximization objective.
Instance
|V|
|E|
dim(Q)
nz(Q>)
nz(Diag(Q))
OSV
gka10b (.mc , .bq )
126
7791
125
7666
122
-154
gka10d (.mc , .bq )
101
4997
100
4897
99
-19102
gka1a (.mc , .bq )
51
156
50
106
50
-3414
gka1b (.mc , .bq )
21
207
20
187
20
-133
gka1c (.mc , .bq )
41
665
40
625
40
-5058
gka1d (.mc , .bq )
101
593
100
494
99
-6333
gka1e (.mc , .bq )
201
2124
200
1924
200
-16464
gka1f (.mc , .bq )
501
12921
500
12421
496
n/a
gka2a (.mc , .bq )
61
222
60
163
59
-6063
gka2b (.mc , .bq )
31
459
30
429
30
-121
gka2c (.mc , .bq )
51
813
50
763
50
-6213
gka2d (.mc , .bq )
101
1116
100
1016
100
-6579
gka2e (.mc , .bq )
201
4127
200
3927
200
-23395
gka2f (.mc , .bq )
501
31518
500
31018
496
n/a
gka3a (.mc , .bq )
71
292
70
223
69
-6037
gka3b (.mc , .bq )
41
812
40
772
39
-118
gka3c (.mc , .bq )
61
761
60
701
60
-6665
gka3d (.mc , .bq )
101
1524
100
1425
100
-9261
gka3e (.mc , .bq )
201
6049
200
5850
198
-25243
gka3f (.mc , .bq )
501
62405
500
61906
494
n/a
gka4a (.mc , .bq )
81
384
80
304
79
-8598
gka4b (.mc , .bq )
51
1259
50
1209
49
-129
gka4c (.mc , .bq )
71
790
70
720
69
-7398
gka4d (.mc , .bq )
101
2100
100
2000
100
-10727
gka4e (.mc , .bq )
201
8117
200
7917
200
-35594
gka4f (.mc , .bq )
501
93253
500
92753
495
n/a
gka5a (.mc , .bq )
51
281
50
231
50
-5737
gka5b (.mc , .bq )
61
1811
60
1751
60
-150
gka5c (.mc , .bq )
81
721
80
641
80
-7362
gka5d (.mc , .bq )
101
2514
100
2414
99
-11626
gka5e (.mc , .bq )
201
10057
200
9857
198
-35154
gka5f (.mc , .bq )
501
124021
500
123521
498
n/a
gka6a (.mc , .bq )
31
204
30
174
30
-3980
gka6b (.mc , .bq )
71
2458
70
2388
70
-146
gka6c (.mc , .bq )
91
490
90
400
89
-5824
gka6d (.mc , .bq )
101
3048
100
2948
100
-14207
gka7a (.mc , .bq )
31
241
30
211
30
-4541
gka7b (.mc , .bq )
81
3205
80
3125
80
-160
gka7c (.mc , .bq )
101
595
100
495
100
-7225
gka7d (.mc , .bq )
101
3532
100
3434
98
-14476
gka8a (.mc , .bq )
101
404
100
304
99
-11109
gka8b (.mc , .bq )
91
4053
90
3963
89
-145
gka8d (.mc , .bq )
101
4007
100
3907
100
-16352
gka9b (.mc , .bq )
101
5003
100
4903
99
-137
gka9d (.mc , .bq )
101
4446
100
4346
99
-15656
HR MaxCut instances generated by
Christoph Helmberg and Franz Rendl (2000) using the machine independent graph generator ``rudy'' written by G. Rinaldi. The precise calls to ``rudy'' can be obtained from the original article.
The first 21 graphs have 800 nodes. More precisely:
Graphs G1 to G5 are random graphs with unit weights and a density of 6%. G6 to G10 are the same graphs with random edge weights from {-1, 1}. G11 to G13 are toroidal grids with random edge weights from {-1, 1}. G14 to G17 are composed from the union of two (almost maximal) planar graphs with unit weights. G18 to G21 are the same graphs with random edge weights from {-1, 1}. The next 21 graphs, G22 to G42, have the analogous types but with 2000 nodes.
G43 to G54 are again constructed using the same types.
Instance
|V|
|E|
dim(Q)
nz(Q>)
nz(Diag(Q))
OSV
G_1 (.mc , .bq )
800
19176
800
19176
800
n/a
G_10 (.mc , .bq )
800
19176
800
19176
757
n/a
G_11 (.mc , .bq )
800
1600
800
1600
519
n/a
G_12 (.mc , .bq )
800
1600
800
1600
498
n/a
G_13 (.mc , .bq )
800
1600
800
1600
486
n/a
G_14 (.mc , .bq )
800
4694
800
4694
800
n/a
G_15 (.mc , .bq )
800
4661
800
4661
800
n/a
G_16 (.mc , .bq )
800
4672
800
4672
800
n/a
G_17 (.mc , .bq )
800
4667
800
4667
800
n/a
G_18 (.mc , .bq )
800
4694
800
4694
668
n/a
G_19 (.mc , .bq )
800
4661
800
4661
686
n/a
G_2 (.mc , .bq )
800
19176
800
19176
800
n/a
G_20 (.mc , .bq )
800
4672
800
4672
701
n/a
G_21 (.mc , .bq )
800
4667
800
4667
670
n/a
G_22 (.mc , .bq )
2000
19990
2000
19990
2000
n/a
G_23 (.mc , .bq )
2000
19990
2000
19990
2000
n/a
G_24 (.mc , .bq )
2000
19990
2000
19990
2000
n/a
G_25 (.mc , .bq )
2000
19990
2000
19990
2000
n/a
G_26 (.mc , .bq )
2000
19990
2000
19990
2000
n/a
G_27 (.mc , .bq )
2000
19990
2000
19990
1840
n/a
G_28 (.mc , .bq )
2000
19990
2000
19990
1813
n/a
G_29 (.mc , .bq )
2000
19990
2000
19990
1820
n/a
G_3 (.mc , .bq )
800
19176
800
19176
800
n/a
G_30 (.mc , .bq )
2000
19990
2000
19990
1811
n/a
G_31 (.mc , .bq )
2000
19990
2000
19990
1829
n/a
G_32 (.mc , .bq )
2000
4000
2000
4000
1281
n/a
G_33 (.mc , .bq )
2000
4000
2000
4000
1215
n/a
G_34 (.mc , .bq )
2000
4000
2000
4000
1267
n/a
G_35 (.mc , .bq )
2000
11778
2000
11778
2000
n/a
G_36 (.mc , .bq )
2000
11766
2000
11766
2000
n/a
G_37 (.mc , .bq )
2000
11785
2000
11785
2000
n/a
G_38 (.mc , .bq )
2000
11779
2000
11779
2000
n/a
G_39 (.mc , .bq )
2000
11778
2000
11778
1698
n/a
G_4 (.mc , .bq )
800
19176
800
19176
800
n/a
G_40 (.mc , .bq )
2000
11766
2000
11766
1708
n/a
G_41 (.mc , .bq )
2000
11785
2000
11785
1676
n/a
G_42 (.mc , .bq )
2000
11779
2000
11779
1685
n/a
G_43 (.mc , .bq )
1000
9990
1000
9990
1000
n/a
G_44 (.mc , .bq )
1000
9990
1000
9990
1000
n/a
G_45 (.mc , .bq )
1000
9990
1000
9990
1000
n/a
G_46 (.mc , .bq )
1000
9990
1000
9990
1000
n/a
G_47 (.mc , .bq )
1000
9990
1000
9990
1000
n/a
G_48 (.mc , .bq )
3000
6000
3000
6000
3000
n/a
G_49 (.mc , .bq )
3000
6000
3000
6000
3000
n/a
G_5 (.mc , .bq )
800
19176
800
19176
800
n/a
G_50 (.mc , .bq )
3000
6000
3000
6000
3000
n/a
G_51 (.mc , .bq )
1000
5909
1000
5909
1000
n/a
G_52 (.mc , .bq )
1000
5916
1000
5916
1000
n/a
G_53 (.mc , .bq )
1000
5914
1000
5914
1000
n/a
G_54 (.mc , .bq )
1000
5916
1000
5916
1000
n/a
G_6 (.mc , .bq )
800
19176
800
19176
752
n/a
G_7 (.mc , .bq )
800
19176
800
19176
759
n/a
G_8 (.mc , .bq )
800
19176
800
19176
743
n/a
G_9 (.mc , .bq )
800
19176
800
19176
757
n/a
L Ising Spinglass instances generated by
Frauke Liers (2004) .
ising2.5-n_seed: For each dimension three one-dimensional Ising chain instances. n=100,150,200,250,300. ising3.0-n_seed: For each dimension three one-dimensional Ising chain instances. n=100,150,200,250,300. t2gn_seed: For each dimension three two-dimensional toroidal grid graphs with gaussian distributed weights and dimension n times n, n=10,15,20. t3gn_seed: For each dimension three three-dimensional toroidal grid graphs with gaussian distributed weights and dimension n times n times n, n=5,6,7. These instances are also part of the
Biq Mac Library (2007) .
Attention: As opposed to other representations of some of these instances, ours do not contain zero-weight edges or coeffcients in accordance with our format specifications.
Instance
|V|
|E|
dim(Q)
nz(Q>)
nz(Diag(Q))
OSV
ising2.5-100_5555 (.mc , .bq )
100
4881
100
4881
100
2460049
ising2.5-100_6666 (.mc , .bq )
100
4877
100
4877
100
2031217
ising2.5-100_7777 (.mc , .bq )
100
4869
100
4869
100
3363230
ising2.5-150_5555 (.mc , .bq )
150
10711
150
10711
150
4363532
ising2.5-150_6666 (.mc , .bq )
150
10722
150
10722
150
4057153
ising2.5-150_7777 (.mc , .bq )
150
10698
150
10698
150
4243269
ising2.5-200_5555 (.mc , .bq )
200
18237
200
18237
200
6294701
ising2.5-200_6666 (.mc , .bq )
200
18246
200
18246
200
6795365
ising2.5-200_7777 (.mc , .bq )
200
18230
200
18230
200
5568272
ising2.5-250_5555 (.mc , .bq )
250
26522
250
26522
250
7919449
ising2.5-250_6666 (.mc , .bq )
250
26533
250
26533
250
6925717
ising2.5-250_7777 (.mc , .bq )
250
26534
250
26534
250
6596797
ising2.5-300_5555 (.mc , .bq )
300
34576
300
34576
300
8579363
ising2.5-300_6666 (.mc , .bq )
300
34753
300
34753
300
9102033
ising2.5-300_7777 (.mc , .bq )
300
34717
300
34717
300
8323804
ising3.0-100_5555 (.mc , .bq )
100
4575
100
4575
100
2448189
ising3.0-100_6666 (.mc , .bq )
100
4543
100
4543
100
1984099
ising3.0-100_7777 (.mc , .bq )
100
4546
100
4546
100
3335814
ising3.0-150_5555 (.mc , .bq )
150
8390
150
8390
150
4279261
ising3.0-150_6666 (.mc , .bq )
150
8432
150
8432
150
3949317
ising3.0-150_7777 (.mc , .bq )
150
8413
150
8413
150
4211158
ising3.0-200_5555 (.mc , .bq )
200
10459
200
10459
200
6215531
ising3.0-200_6666 (.mc , .bq )
200
10474
200
10474
200
6756263
ising3.0-200_7777 (.mc , .bq )
200
10492
200
10492
200
5560824
ising3.0-250_5555 (.mc , .bq )
250
12039
250
12039
250
7823791
ising3.0-250_6666 (.mc , .bq )
250
12008
250
12008
250
6903351
ising3.0-250_7777 (.mc , .bq )
250
12031
250
12031
250
6418276
ising3.0-300_5555 (.mc , .bq )
300
14011
300
14011
300
8493173
ising3.0-300_6666 (.mc , .bq )
300
13882
300
13882
300
8915110
ising3.0-300_7777 (.mc , .bq )
300
13983
300
13983
300
8242904
t2g10_5555 (.mc , .bq )
100
200
100
200
100
6049461
t2g10_6666 (.mc , .bq )
100
200
100
200
100
5757868
t2g10_7777 (.mc , .bq )
100
200
100
200
100
6509837
t2g15_5555 (.mc , .bq )
225
450
225
450
225
15051133
t2g15_6666 (.mc , .bq )
225
450
225
450
225
15763716
t2g15_7777 (.mc , .bq )
225
450
225
450
225
15269399
t2g20_5555 (.mc , .bq )
400
800
400
800
400
24838942
t2g20_6666 (.mc , .bq )
400
800
400
800
400
29290570
t2g20_7777 (.mc , .bq )
400
800
400
800
400
28349398
t3g5_5555 (.mc , .bq )
125
375
125
375
125
10933215
t3g5_6666 (.mc , .bq )
125
375
125
375
125
11582216
t3g5_7777 (.mc , .bq )
125
375
125
375
125
11552046
t3g6_5555 (.mc , .bq )
216
648
216
648
216
17434469
t3g6_6666 (.mc , .bq )
216
648
216
648
216
20217380
t3g6_7777 (.mc , .bq )
216
648
216
648
216
19475011
t3g7_5555 (.mc , .bq )
343
1029
343
1029
343
28302918
t3g7_6666 (.mc , .bq )
343
1029
343
1029
343
33611981
t3g7_7777 (.mc , .bq )
343
1029
343
1029
343
29118445
M These instances were generated from real-world data on radio frequency interferences between major Italian cities in the context of a frequency assignment problem. They have been made available by Carlo Mannino and have been first used in a MaxCut context in this
paper .
W MaxCut instances generated by Angelika Wiegele as part of the
Biq Mac Library (2007) using the machine independent graph generator ``rudy'' written by G. Rinaldi. The precise calls to ``rudy'' can be obtained from
here .
Attention: As opposed to other representations of some of these instances, ours do not contain zero-weight edges or coeffcients in accordance with our format specifications.
g05_n.i: For each dimension ten unweighted graphs with edge probability 0.5. n=60,80,100 pm1s_n.i: For each dimension ten weighted graphs with edge weights chosen uniformly from {-1,0,1} and density 0.1. n=80,100 pm1d_n.i: For each dimension ten weighted graphs with edge weights chosen uniformly from {-1,0,1} and density 0.99. n=80,100 wd_100.i: For each density ten graphs with integer edge weights chosen from [-10,10] and density d=0.1,0.5,0.9, n=100 pwd_100.i: For each density ten graphs with integer edge weights chosen from [0,10] and density d=0.1,0.5,0.9, n=100
Instance
|V|
|E|
dim(Q)
nz(Q>)
nz(Diag(Q))
OSV
g05_100.0 (.mc , .bq )
100
2475
100
2475
100
1430
g05_100.1 (.mc , .bq )
100
2475
100
2475
100
1425
g05_100.2 (.mc , .bq )
100
2475
100
2475
100
1432
g05_100.3 (.mc , .bq )
100
2475
100
2475
100
1424
g05_100.4 (.mc , .bq )
100
2475
100
2475
100
1440
g05_100.5 (.mc , .bq )
100
2475
100
2475
100
1436
g05_100.6 (.mc , .bq )
100
2475
100
2475
100
1434
g05_100.7 (.mc , .bq )
100
2475
100
2475
100
1431
g05_100.8 (.mc , .bq )
100
2475
100
2475
100
1432
g05_100.9 (.mc , .bq )
100
2475
100
2475
100
1430
g05_60.0 (.mc , .bq )
60
885
60
885
60
536
g05_60.1 (.mc , .bq )
60
885
60
885
60
532
g05_60.2 (.mc , .bq )
60
885
60
885
60
529
g05_60.3 (.mc , .bq )
60
885
60
885
60
538
g05_60.4 (.mc , .bq )
60
885
60
885
60
527
g05_60.5 (.mc , .bq )
60
885
60
885
60
533
g05_60.6 (.mc , .bq )
60
885
60
885
60
531
g05_60.7 (.mc , .bq )
60
885
60
885
60
535
g05_60.8 (.mc , .bq )
60
885
60
885
60
530
g05_60.9 (.mc , .bq )
60
885
60
885
60
533
g05_80.0 (.mc , .bq )
80
1580
80
1580
80
929
g05_80.1 (.mc , .bq )
80
1580
80
1580
80
941
g05_80.2 (.mc , .bq )
80
1580
80
1580
80
934
g05_80.3 (.mc , .bq )
80
1580
80
1580
80
923
g05_80.4 (.mc , .bq )
80
1580
80
1580
80
932
g05_80.5 (.mc , .bq )
80
1580
80
1580
80
926
g05_80.6 (.mc , .bq )
80
1580
80
1580
80
929
g05_80.7 (.mc , .bq )
80
1580
80
1580
80
929
g05_80.8 (.mc , .bq )
80
1580
80
1580
80
925
g05_80.9 (.mc , .bq )
80
1580
80
1580
80
923
pm1d_100.0 (.mc , .bq )
100
4901
100
4901
97
340
pm1d_100.1 (.mc , .bq )
100
4901
100
4901
99
324
pm1d_100.2 (.mc , .bq )
100
4901
100
4901
99
389
pm1d_100.3 (.mc , .bq )
100
4901
100
4901
94
400
pm1d_100.4 (.mc , .bq )
100
4901
100
4901
100
363
pm1d_100.5 (.mc , .bq )
100
4901
100
4901
97
441
pm1d_100.6 (.mc , .bq )
100
4901
100
4901
97
367
pm1d_100.7 (.mc , .bq )
100
4901
100
4901
98
361
pm1d_100.8 (.mc , .bq )
100
4901
100
4901
94
385
pm1d_100.9 (.mc , .bq )
100
4901
100
4901
97
405
pm1d_80.0 (.mc , .bq )
80
3128
80
3128
75
227
pm1d_80.1 (.mc , .bq )
80
3128
80
3128
75
245
pm1d_80.2 (.mc , .bq )
80
3128
80
3128
78
284
pm1d_80.3 (.mc , .bq )
80
3128
80
3128
78
291
pm1d_80.4 (.mc , .bq )
80
3128
80
3128
79
251
pm1d_80.5 (.mc , .bq )
80
3128
80
3128
78
242
pm1d_80.6 (.mc , .bq )
80
3128
80
3128
75
205
pm1d_80.7 (.mc , .bq )
80
3128
80
3128
76
249
pm1d_80.8 (.mc , .bq )
80
3128
80
3128
74
293
pm1d_80.9 (.mc , .bq )
80
3128
80
3128
77
258
pm1s_100.0 (.mc , .bq )
100
495
100
495
88
127
pm1s_100.1 (.mc , .bq )
100
495
100
495
92
126
pm1s_100.2 (.mc , .bq )
100
495
100
495
87
125
pm1s_100.3 (.mc , .bq )
100
495
100
495
87
111
pm1s_100.4 (.mc , .bq )
100
495
100
495
86
128
pm1s_100.5 (.mc , .bq )
100
495
100
495
81
128
pm1s_100.6 (.mc , .bq )
100
495
100
495
90
122
pm1s_100.7 (.mc , .bq )
100
495
100
495
90
112
pm1s_100.8 (.mc , .bq )
100
495
100
495
91
120
pm1s_100.9 (.mc , .bq )
100
495
100
495
86
127
pm1s_80.0 (.mc , .bq )
80
316
80
316
70
79
pm1s_80.1 (.mc , .bq )
80
316
80
316
69
85
pm1s_80.2 (.mc , .bq )
80
316
80
316
67
82
pm1s_80.3 (.mc , .bq )
80
316
80
316
66
81
pm1s_80.4 (.mc , .bq )
80
316
80
316
69
70
pm1s_80.5 (.mc , .bq )
80
316
80
316
66
87
pm1s_80.6 (.mc , .bq )
80
316
80
316
71
73
pm1s_80.7 (.mc , .bq )
80
316
80
316
69
83
pm1s_80.8 (.mc , .bq )
80
316
80
316
68
81
pm1s_80.9 (.mc , .bq )
80
316
80
316
67
70
pw01_100.0 (.mc , .bq )
100
495
100
495
100
2019
pw01_100.1 (.mc , .bq )
100
495
100
495
100
2060
pw01_100.2 (.mc , .bq )
100
495
100
495
100
2032
pw01_100.3 (.mc , .bq )
100
495
100
495
100
2067
pw01_100.4 (.mc , .bq )
100
495
100
495
100
2039
pw01_100.5 (.mc , .bq )
100
495
100
495
100
2108
pw01_100.6 (.mc , .bq )
100
495
100
495
100
2032
pw01_100.7 (.mc , .bq )
100
495
100
495
100
2074
pw01_100.8 (.mc , .bq )
100
495
100
495
100
2022
pw01_100.9 (.mc , .bq )
100
495
100
495
100
2005
pw05_100.0 (.mc , .bq )
100
2475
100
2475
100
8190
pw05_100.1 (.mc , .bq )
100
2475
100
2475
100
8045
pw05_100.2 (.mc , .bq )
100
2475
100
2475
100
8039
pw05_100.3 (.mc , .bq )
100
2475
100
2475
100
8139
pw05_100.4 (.mc , .bq )
100
2475
100
2475
100
8125
pw05_100.5 (.mc , .bq )
100
2475
100
2475
100
8169
pw05_100.6 (.mc , .bq )
100
2475
100
2475
100
8217
pw05_100.7 (.mc , .bq )
100
2475
100
2475
100
8249
pw05_100.8 (.mc , .bq )
100
2475
100
2475
100
8199
pw05_100.9 (.mc , .bq )
100
2475
100
2475
100
8099
pw09_100.0 (.mc , .bq )
100
4455
100
4455
100
13585
pw09_100.1 (.mc , .bq )
100
4455
100
4455
100
13417
pw09_100.2 (.mc , .bq )
100
4455
100
4455
100
13461
pw09_100.3 (.mc , .bq )
100
4455
100
4455
100
13656
pw09_100.4 (.mc , .bq )
100
4455
100
4455
100
13514
pw09_100.5 (.mc , .bq )
100
4455
100
4455
100
13574
pw09_100.6 (.mc , .bq )
100
4455
100
4455
100
13640
pw09_100.7 (.mc , .bq )
100
4455
100
4455
100
13501
pw09_100.8 (.mc , .bq )
100
4455
100
4455
100
13593
pw09_100.9 (.mc , .bq )
100
4455
100
4455
100
13658
w01_100.0 (.mc , .bq )
100
466
100
466
98
651
w01_100.1 (.mc , .bq )
100
468
100
468
97
719
w01_100.2 (.mc , .bq )
100
460
100
460
99
676
w01_100.3 (.mc , .bq )
100
475
100
475
98
813
w01_100.4 (.mc , .bq )
100
464
100
464
97
668
w01_100.5 (.mc , .bq )
100
473
100
473
99
643
w01_100.6 (.mc , .bq )
100
474
100
474
97
654
w01_100.7 (.mc , .bq )
100
476
100
476
97
725
w01_100.8 (.mc , .bq )
100
473
100
473
98
721
w01_100.9 (.mc , .bq )
100
475
100
475
100
729
w05_100.0 (.mc , .bq )
100
2343
100
2343
100
1646
w05_100.1 (.mc , .bq )
100
2357
100
2357
99
1606
w05_100.2 (.mc , .bq )
100
2352
100
2352
97
1902
w05_100.3 (.mc , .bq )
100
2365
100
2365
98
1627
w05_100.4 (.mc , .bq )
100
2348
100
2348
98
1546
w05_100.5 (.mc , .bq )
100
2360
100
2360
100
1581
w05_100.6 (.mc , .bq )
100
2355
100
2355
97
1479
w05_100.7 (.mc , .bq )
100
2365
100
2365
99
1987
w05_100.8 (.mc , .bq )
100
2364
100
2364
100
1311
w05_100.9 (.mc , .bq )
100
2355
100
2355
99
1752
w09_100.0 (.mc , .bq )
100
4223
100
4223
98
2121
w09_100.1 (.mc , .bq )
100
4222
100
4222
99
2096
w09_100.2 (.mc , .bq )
100
4252
100
4252
100
2738
w09_100.3 (.mc , .bq )
100
4254
100
4254
99
1990
w09_100.4 (.mc , .bq )
100
4222
100
4222
100
2033
w09_100.5 (.mc , .bq )
100
4258
100
4258
99
2433
w09_100.6 (.mc , .bq )
100
4245
100
4245
98
2220
w09_100.7 (.mc , .bq )
100
4258
100
4258
98
2252
w09_100.8 (.mc , .bq )
100
4258
100
4258
99
1843
w09_100.9 (.mc , .bq )
100
4258
100
4258
99
2043